

Drugs in Hematology

President: Pier Luigi Zinzani
Co-President: Michele Cavo

Bologna, Royal Hotel Carlton January 15-17, 2024

Zilovertamab vedotin

Paul Barr University of Rochester

BMS

Seattle Genetics

Janssen

AstraZeneca

Regeneron

Adaptive

Disclosures of Paul Barr

Х

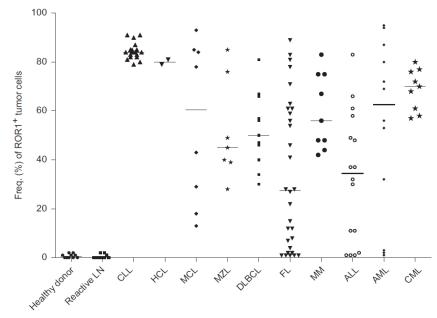
Х

Х

х

Х

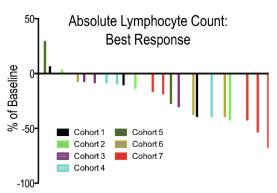
Х


Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Abbvie			х				
Beigene			x				
Genentech			x				

ROR1 Is Expressed on Multiple Cancers but Not on Normal Tissues

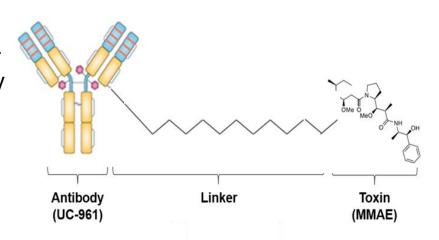
- Receptor tyrosine kinase-like orphan receptor 1
 (ROR1) is an oncofetal protein important for
 embryonic and fetal development ¹
- ROR1 expression attenuates in normal post partum tissues, being largely absent from adult tissues and absent on critical organs
- ROR1 is highly expressed on hematological and solid tumors, including malignant B lymphocytes²

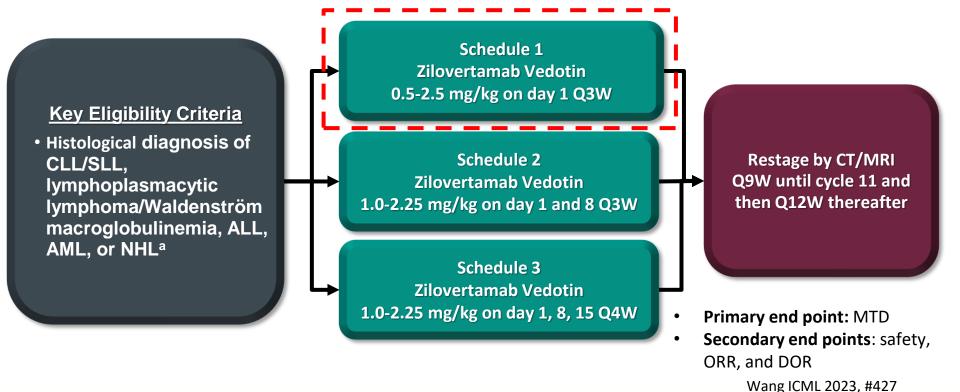
CLL	MCL	Lymphomas	Solid Tumors
95%	95%	90%	54-90%


ROR1 Expression on Hematological Cancers

- 1. Borcherding N et al. Protein Cell. 2014;5:496-502;
- 2. Danesmanesh AH et al. Leuk Lymphoma. 2013;54:843-850

Zilovertamab


- Zilovertamab (Cirmtuzumab, UC-961)
 - Humanized monoclonal ROR1 antibody
- Phase 1 trial of 4 biweekly infusions
 - Half life of 32 days
 - Evidence of ROR1 down modulation
 - No dose limiting toxicities
 - AEs related to underlying CLL
 - 3 asymptomatic lipase elevations
 - Of 26 CLL patients, 17 had best response of SD



Zilovertamab Vedotin

- Zilovertamab vedotin (VLS-101, MK-2140) is an ADC of:
 - The humanized monoclonal antibody, UC 961, with no normal tissue cross-reactivity
 - A cleavable linker and the antimicrotubule toxin, monomethyl auristatin E (MMAE)
- Binding to tumor cell ROR1 causes rapid internalization and lysosomal trafficking to deliver MMAE

Phase 1 First In-Human Dose Escalation Study

Baseline Demographics (Schedule 1)

n (%)	All Patients N = 56
Age, median (range), years	70 (40-91)
Type of hematological malignancy	
DLBCL	17 (30)
MCL	17 (30)
Richter's	7 (13)
CLL	7 (13)
FL	3 (19)
AML	3 (5)
MZL	2 (4)

n (%)	Patients
Prior lines of therapy, median (range)	
DLCBL	4 (1-9)
Prior CAR-T	12 (71%)
Prior ASCT	2 (12%)
MCL	4 (1-9)
Prior BTKi	17 (100%)
Prior ASCT	4 (24%)
Richter's	6 (1-10)
Prior BTKi	5 (71%)

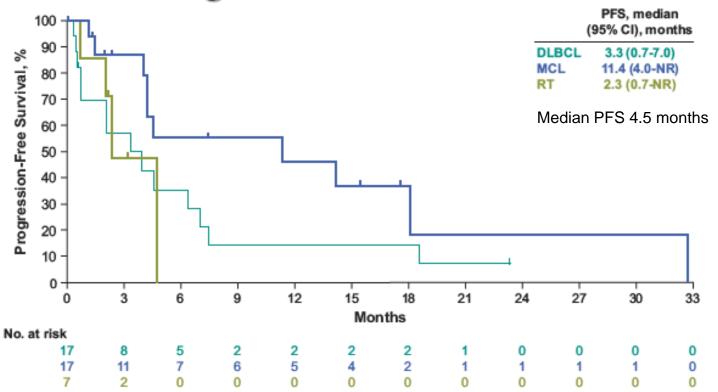
Any-Grade Adverse Events in ≥20% of Patients

	All Patients N = 51	
Any-Grade AEs, n (%)	All-Cause	Treatment- Related
Peripheral neuropathy	25 (49)	24 (47)
Fatigue	23 (45)	19 (37)
Nausea	23 (45)	14 (28)
Diarrhea	19 (37)	11 (22)
Dizziness	19 (37)	9 (18)
Decreased neutrophil	18 (35)	16 (31)

	All Pat N =	
Any Grade AEs, n (%)	All-Cause	Treatment- Related
Constipation	15 (29)	5 (10)
Myalgia	15 (29)	10 (20)
Pyrexia	14 (28)	4 (<u>8</u>)
Vomiting	12 (24)	5 (10)
Decreased appetite	12 (24)	9 (18)
Dyspnea	11 (22)	8 (16)

Wang et al. NEJM Evidence 2021; 1(1)

Grade 3 or 4 Adverse Events in ≥3 Patients


		Patients = 51
Grade 3 or 4 AEs, n (%)	All-Cause	Treatment-Related
Decreased neutrophil count	16 (31)	16 (31)
Decreased hemoglobin	8 (16)	3 (6)
Febrile neutropenia	4 (8)	2 (4)
Peripheral neuropathy	4 (8)	4 (8)
Decreased platelet count	4 (8)	4 (8)
Diarrhea	3 (6)	2 (4)
Increased lipase	3 (6)	2 (4)
Pneumonia	3 (6)	1 (2)

Wang et al. NEJM Evidence 2021; 1(1)

Objective Response Rates

	All patients	DLBCL	MCL	RT
	N= 56	n = 17	n = 17	n = 7
ORR, % (95% CI)	32 (20-46)	29 (10-56)	53 (28-77)	57 (18-90)
Best overall response, n (%)				
CR	7 (13)	3 (18)	2 (12)	2 (29)
PR	11 (20)	2 (12)	7 (41)	2 (29)
SD	14 (25)	4 (24)	3 (18)	0 (0)
PD	14 (25)	6 (35)	2 (12)	2 (29)
NE	10 (18)	2 (12)	3 (18)	1 (14)

Progression free survival

Phase 2 R/R DLBCL (waveLINE-004)

Key Eligibility Criteria

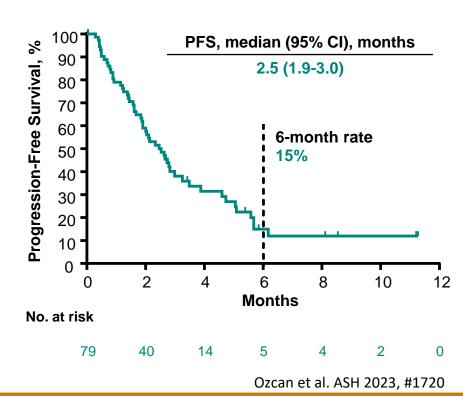
- Age ≥18 years
- DLBCL per WHO classification^a
- Radiographically measurable disease per Lugano 2014 criteria
- PET-positive disease by BICR
- ECOG PS of 0-2
- Progressed after ≥2 prior lines of therapy, including an alkylating agent, anthracycline, and an anti-CD20 antibody
- Progressed after or ineligible for ASCT and CAR-T therapy

N = ~100
Zilovertamab vedotin
2.5 mg/kg IV Q3W
Survival
follow-up

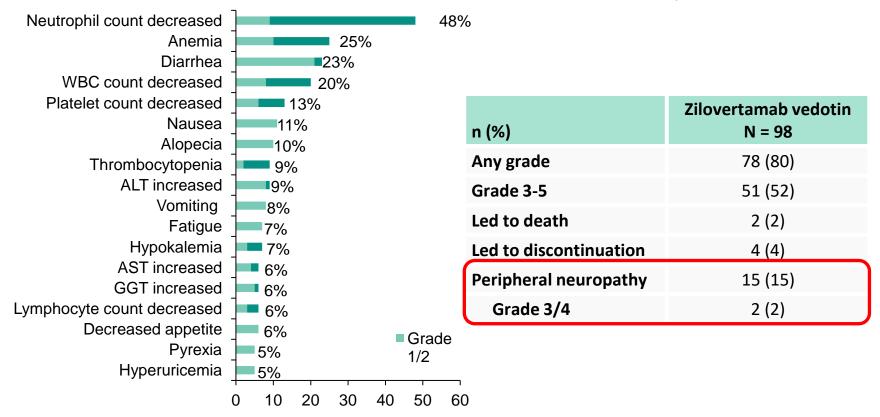
- Primary end point: ORR per Lugano 2014 criteria
- Secondary end points: DOR per Lugano 2014 criteria and safety and tolerability
- Exploratory end points: DCR and PFS per Lugano 2014 criteria and OS

Assessments and statistical analyses

- Safety and OS were evaluated in all patients who received ≥1 dose of study treatment (APaT population)
- ORR, DOR, and PFS were evaluated in all patients who received ≥1 dose of study treatment and had ≥1 postbaseline scan (efficacy analysis population)

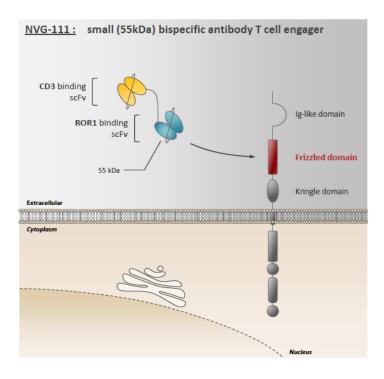

Baseline Characteristics

	Zilovertamab vedotin
	N = 98
Age, median (range), years	66 (19-88)
≥65 years	53 (54)
Male	63 (64)
Cell of origin (IHC)	
GCB	38 (39)
Non-GCB	35 (36)
unknown	25 (16)
Ann Arbor stage	
II	16 (16)
III	9 (9)
IV	60 (61)
Missing	13 (13)


	Zilovertamab vedotin N = 98
Prior lines of therapy	
≤2	28 (29)
≥3	70 (71)
Prior ASCT/CAR-T	
ASCT	15 (15)
CAR-T	18 (18)
ASCT and CAR-T	5 (5)
ASCT / CAR-T ineligible	57 (58)
Missing	3 (3)

Efficacy of Zilovertamab Vedotin in Relapsed Refractory DLBCL

	Zilovertamab vedotin n = 79
ORR (CR + PR), % (95% CI)	29 (19-40)
DCR (CR + PR + SD), % (95% CI)	42 (31-53)
Best overall response, n (%)	
CR	10 (13)
PR	13 (16)
SD	10 (13)
PD	30 (38)
Not evaluable	1 (1)
Not assessed	15 (19)*

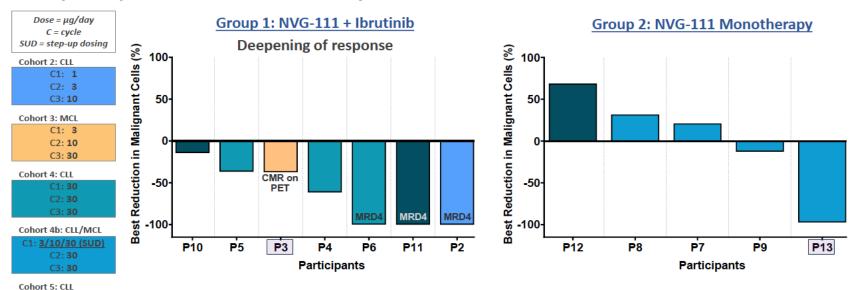

Treatment-Related AEs With Incidence ≥5%

Ongoing Trials with Zilovertamab Vedotin

Agents	Phase	Disease	NCT
Zilovertamab	Phase 2	Solid tumors	NCT04504916
Zilovertamab + Nemtabrutinib Phase 2 basket		NHL	NCT05458297
Zilovertamab + R-CHP	Phase 2	DLBCL	NCT05406401
GemOx or BR +/- Zilovertamab	Phase 2/3	R/R DLBCL	NCT05139017

NVG-111: A First in Class ROR1 x CD3 T Cell Engager

- NVG-111 is a bispecific humanized tandem scFv T cell engager (TCE) targeting ROR1xCD3
- NVG-111 mediates potent killing of ROR1+ tumors^{1,2} by:
 - Binding to a unique membrane proximal Frizzled domain epitope
 - Possessing an optimized geometry of binding for efficient synapse formation
 - Redirecting T cells via the humanized CD3 binder, which is optimized for efficient tumor killing and attenuated cytokine release


References.

Gohil et al, Oncoimmunol 2017, 6:e1326437

Gohil et al, Br J Haematol 2019, 186:380

Best Tumor Reduction from Baseline

12 participants evaluable for efficacy

C1: 3/10/45 (SUD) C2: 45 C3: 45

MCL

Clear evidence of activity in CLL and MCL despite poor T cell fitness^{1,2,3}

Forconi et al, Blood 2015, 126:573

Yao et al, Blood 2020, 136(Suppl 1):16 Davis et al. Blood Adv 2020, 4:4849

Conclusions

- The distinctive expression of ROR1 make it an attractive target for B-cell malignancies
- Zilovertamab binds to ROR1, with evidence of downstream signaling inhibition
- Zilovertamab vedotin has demonstrated clinical efficacy in MCL and DLBCL with phase 2 dose of 2.5 mg/kg
- The safety profile is consistent with the known profile of MMAE-containing agents
- Combinatorial ZV studies as well as novel strategies targeting ROR1 are ongoing